6.3 Signal Space Concepts

As in the case of vectors, we now develop a parallel treatment for a set of
signals.

Definition 6.34.

(a) The inner product of twoFéalEvaluédSignals x1(¢) and xo(t) is denoted
by (z1(t), zo(t)) and defined by

(21(), (1)) = /_ " o (Bma(t)dt

(b) The signals are orthogonal if their inner product is zero.

(¢) The norm of a signal is defined as

lz()]] = v/ ({z = VE,

where E, is the energy in z(t):
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(d) A collection of N signals is orthonormal if the signals are orthogonal
and their norms are all unity.

Example 6.35. Consider the two waveforms shown in Figure [26]
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Flgure 26: Two Waveforms in Example 6.3 =/2
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Definition 6.36.
(a) The (orthogonal) projection of z5(t) to x1(t) is given by

<K"J <, >
(b) The cross-correlation coefficient of z(t) and xy(t) is defined as
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Example 6.37. For the two waveforms shown in Figure [26],
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6.38. Similar to [6.30, the Gram-Schmidt Orthogonalization Proce-
dure (GSOP) can be used to construct a set of orthonormal waveforms

from a set of finite energy signal waveforms: {s;(¢),j =1,2,..., M}.
The first orthonormal function is simply constructed as

up(t s1(t
¢1(t) _ 1( ) _ 1( ) .
VE., Es
The subsequent orthonormal functions are found as follows:

¢Z(t) - ulg)’
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where the unnormalized basis function u;(t) is given by

i—1
ui(t) = si(t) — ZPTOJuk(t)Si (t).
k=1

and

PrOf5 1) = o o e () = (s (€)1 (0) 6 (0

As with the GSOP for vectors, we also discard the zero functions. In
general, the final number of orthonormal functions, IV, is less than or equal
to the number of given waveforms, M, depending on one of the two possi-
bilities:
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(a) If the waveforms {s;(t), j
set, then N = M.

(b) If the waveforms {s;(t),j
then N < M.

=1,2,..., M} form a linearly independent

1,2,..., M} are not linearly independent,

Example 6.39. Consider the four waveforms illustrated in Figure 27 Use
the Gram-Schmidt orthogonalization procedure (where the waveforms are

applied in the order given) to

find the orthonormal basis waveforms ¢ (1),

®2(t), ... whose linear combinations can be used to represent the four wave-
forms. %
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Figure 27: Four signals for orthogonalization in Example [6.39
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6.40. Once we have constructed®|the set of, say N, orthonormal waveforms
{¢:i(t),i=1,2,..., N}, we can express the signals s;(f) as linear combina-
tions of the N orthonormal basis functions ¢;(t). Thus, we may write

=250t (35)

where the constants (weights)
57 = (s(), &i(t)) . (36)

20We have shown how this set can be constructed from GSOP. However, in practice, this set may be
derived from different procedure.
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Note that SZ(-j )qbi(t) = (5;(t), ¢i(t)) ¢i(t) can be geometrically interpreted as
the projection of the signal s;(t) onto the ith axis, ¢;(t).
Based on (35]), each signal may be represented by the vector (or sequence)

s = ( §j),sgj) ...,3<j))T, (37)
or, equivalently, as a point in the N-dimensional (in general, complex) signal
space.

The (mathematical /conceptual) conversion/mapping from waveform to
it corresponding vector in and is shown in Figure 28. The inverse
mapping from vector to waveform in is shown in Figure .
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Figure 28: Waveform to vector (a), and vector to waveform (b) mappings.

Example 6.41. For the four waveforms in Example [6.39| and the orthonor-
mal basis derived from GSOP,
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Definition 6.42. From[6.40] a set of M signals {s;(t),j =1,2,..., M} can
be represented by a set of M vectors {s(j )} in the N-dimensional space. The
corresponding set of vectors is called the signal space representation, or
constellation, of {s;(t),j =1,2,...,M}.

6.43. From the orthonormality of the basis, we have

(a) the inner product of two signals is equal to the inner product of the
corresponding vectors:

(b) By = B = 5,01 = |9

6.44. It should be emphasized, however, that the functions {¢;(t)} ob-
tained from the Gram-Schmidt procedure are not unique. If we alter the
order in which the orthogonalization of the signals {s;(¢)} is performed, the
orthonormal waveforms will be different and the corresponding vector rep-
resentation of the signals {s;(¢)} will depend on the resulting orthonormal
functions {¢;(t)}. Nevertheless, the dimensionality of the signal space (N)
will not change, and the vectors sU) will retain their geometric configuration;
i.e., their lengths and their inner products will be invariant to the choice of
the orthonormal functions {¢;(t)}.
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