
6.3 Signal Space Concepts

As in the case of vectors, we now develop a parallel treatment for a set of
signals.

Definition 6.34.

(a) The inner product of two real-valued signals x1(t) and x2(t) is denoted
by 〈x1(t), x2(t)〉 and defined by

〈x1(t), x2(t)〉 =

∫ ∞
−∞

x1(t)x2(t)dt.

(b) The signals are orthogonal if their inner product is zero.

(c) The norm of a signal is defined as

‖x(t)‖ =
√
〈x(t), x(t)〉 =

√
Ex

where Ex is the energy in x(t):

〈x (t) , x (t)〉 = =

∞∫
−∞

|x (t)|2dt ≡ Ex

(d) A collection of N signals is orthonormal if the signals are orthogonal
and their norms are all unity.

Example 6.35. Consider the two waveforms shown in Figure 26.
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Figure 26: Two Waveforms in Example 6.35
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Definition 6.36.

(a) The (orthogonal) projection of x2(t) to x1(t) is given by

projx1(t)x2 (t) = =
〈x2 (t) , x1 (t)〉
〈x1 (t) , x1 (t)〉

x1 (t) =
〈x2 (t) , x1 (t)〉

Ex1

x1 (t)

(b) The cross-correlation coefficient of x1(t) and x2(t) is defined as

ρx1,x2 =
〈x1 (t) , x2 (t)〉√

Ex1Ex2

.

• projx1(t)x2 (t) =
√
Ex2ρx2,x1

x1(t)√
Ex1

Example 6.37. For the two waveforms shown in Figure 26,

6.38. Similar to 6.30, the Gram-Schmidt Orthogonalization Proce-
dure (GSOP) can be used to construct a set of orthonormal waveforms
from a set of finite energy signal waveforms: {sj(t), j = 1, 2, . . . ,M}.

The first orthonormal function is simply constructed as

φ1(t) =
u1(t)√
Eu1

=
s1(t)√
Es1

.

The subsequent orthonormal functions are found as follows:

φi(t) =
ui(t)√
Eui

,

where the unnormalized basis function ui(t) is given by

ui(t) = si(t)−
i−1∑
k=1

projuk(t)si (t).

and

projuk(t)si (t) =
〈si (t) , uk (t)〉
〈uk (t) , uk (t)〉

uk (t) = 〈si (t) , φk (t)〉φk (t)

As with the GSOP for vectors, we also discard the zero functions. In
general, the final number of orthonormal functions, N , is less than or equal
to the number of given waveforms, M , depending on one of the two possi-
bilities:
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(a) If the waveforms {sj(t), j = 1, 2, . . . ,M} form a linearly independent
set, then N = M .

(b) If the waveforms {sj(t), j = 1, 2, . . . ,M} are not linearly independent,
then N < M .

Example 6.39. Consider the four waveforms illustrated in Figure 27. Use
the Gram-Schmidt orthogonalization procedure (where the waveforms are
applied in the order given) to find the orthonormal basis waveforms φ1(t),
φ2(t), . . . whose linear combinations can be used to represent the four wave-
forms.
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Figure 27: Four signals for orthogonalization in Example 6.39

• First we set u1(t) = s1(t).
Eu1 = Es1 =

φ1 (t) = u1(t)√
Eu1

= s1(t)√
Es1

=

• u2 (t) = s2 (t)− proju1s2 =

Eu2 =

φ2 (t) = u2(t)√
Eu2

=

93



• u3 (t) = s3 (t)− proju1s3 − proju2s3

Eu3 =

φ3 (t) = u3(t)√
Eu3

=

• u4 (t) = s4 (t)− proju1s4 − proju2s4 − proju3s4

6.40. Once we have constructed20 the set of, say N , orthonormal waveforms
{φi(t), i = 1, 2, . . . , N}, we can express the signals si(t) as linear combina-
tions of the N orthonormal basis functions φi(t). Thus, we may write

sj(t) =
N∑
i=1

s
(j)
i φi(t) (35)

where the constants (weights)

s
(j)
i = 〈sj(t), φi(t)〉 . (36)

20We have shown how this set can be constructed from GSOP. However, in practice, this set may be
derived from different procedure.
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Note that s
(j)
i φi(t) = 〈sj(t), φi(t)〉φi(t) can be geometrically interpreted as

the projection of the signal sj(t) onto the ith axis, φi(t).
Based on (35), each signal may be represented by the vector (or sequence)

s(j) = (s
(j)
1 , s

(j)
2 , . . . , s

(j)
N )T , (37)

or, equivalently, as a point in the N -dimensional (in general, complex) signal
space.

The (mathematical/conceptual) conversion/mapping from waveform to
it corresponding vector in (37) and (36) is shown in Figure 28a. The inverse
mapping from vector to waveform in (35) is shown in Figure 28b.
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Figure 28: Waveform to vector (a), and vector to waveform (b) mappings.

Example 6.41. For the four waveforms in Example 6.39 and the orthonor-
mal basis derived from GSOP,

s1(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(1) =

s2(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(2) =

s3(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(3) =

s4(t) = φ1(t) + φ2(t) + φ3(t) ⇒ s(4) =
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Definition 6.42. From 6.40, a set of M signals {sj(t), j = 1, 2, . . . ,M} can
be represented by a set of M vectors

{
s(j)
}

in the N -dimensional space. The
corresponding set of vectors is called the signal space representation, or
constellation, of {sj(t), j = 1, 2, . . . ,M}.

6.43. From the orthonormality of the basis, we have

(a) the inner product of two signals is equal to the inner product of the
corresponding vectors:

〈si(t), sj(t)〉 =
〈
s(i), s(j)

〉
.

(b) Ej ≡ Es(j) = ‖sj(t)‖2 =
∥∥s(j)

∥∥2
.

6.44. It should be emphasized, however, that the functions {φi(t)} ob-
tained from the Gram-Schmidt procedure are not unique. If we alter the
order in which the orthogonalization of the signals {sj(t)} is performed, the
orthonormal waveforms will be different and the corresponding vector rep-
resentation of the signals {sj(t)} will depend on the resulting orthonormal
functions {φi(t)}. Nevertheless, the dimensionality of the signal space (N)
will not change, and the vectors s(j) will retain their geometric configuration;
i.e., their lengths and their inner products will be invariant to the choice of
the orthonormal functions {φi(t)}.
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